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An array of parametrically driven pendulums has been found to exhibit a remarkably wide range of
behavior. Here, we establish an analytically based model for a type of domain wall that is, so far, unique
to this system. This domain wall separates two regions in containing standing wave modes having
different wavelengths. The model entails the “elimination” of a fraction of the oscillators. Numerical
predictions based on this model are compared with data generated by numerically solving the equations
of motion of a one-dimensional lattice of coupled nonlinear oscillators. The agreement between theory

and numerical simulation is, by and large, satisfactory.

PACS number(s): 03.20.+1i, 46.10.+z, 63.20.Pw, 63.20.Ry

I. INTRODUCTION

Ever since the observation of a galaxy of subharmonics
in the gravity waves on the surface of a long, narrow
trough of water [1], and the subsequent discovery of a
nonpropagating solitary wave in the same configuration
[2], experimental studies of this hydrodynamical system
and its discrete analog, a parametrically excited array of
coupled pendulums, have generated new and interesting
dynamical effects [3,4]. This paper is about two recently
observed domain-wall-like structures appearing in the
one-dimensional lattice of coupled pendulum [3]. These
spatially localized configurations represent variations on
the nonpropagating soliton described above. As will be
demonstrated, there are cases in which the domain wall
in the pendulum lattice differs from the hydrodynamic
soliton in that its existence appears to demand an under-
lying system that is spatially resolvable into discrete com-
ponents. This is true for one of the types of domain walls
discussed in this paper, and we must modify the ap-
proaches previously taken in the study of nonpropagating
solitons.

The behavior of domain walls in the context of
condensed-matter physics dominates many important
phenomena, including, but not limited to, phase coex-
istence in systems with a broken discrete symmetry. The
idea that domain walls can be understood as localized
structures in a continuous system governed by nonlinear
differential equations dates back to the work of van der
Waals on the gas-liquid interface near a critical point [5].
In addition, some of the most interesting solitary wave
solutions in integrable systems possess a domain-wall-like
structure, such as the kink in the sine-Gordon equation
[6].

A characteristic of the domain wall on which attention
is focused in this paper is that it seems to owe its ex-
istence to the inherently discrete nature of the system
that supports it. Given this, one hopes that the investiga-
tion on which we report here will lead to a deeper under-
standing of the physics and mathematics of domain walls.

Denardo et al. [7] develop an alternative approach to
the kind of domain wall upon which we focus our atten-
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tion in this paper. Their model is a continuous one, and
they discuss the dynamical steady states of their system
in terms of a sinusoidal displacement function with an
amplitude and effective wavelength that have slow spatial
variations. This approach leads to equations for a
domain wall separating two regions having different
asymptotic wavelengths. The solution holds only when a
certain global criterion is met. In the case of the pendu-
lum lattice, this condition is found not to hold.

The focus of the investigation undertaken here is the
set of steady-state solutions of the equations of motion of
the pendulum lattice. However, in the steps leading to
the equations governing fixed-amplitude oscillations we
allow for the possibility of configurations that evolve in
time. Thus, one ought to be able to adapt the method
utilized here to study the chaotic motion that has recent-
ly been observed to occur in a domain wall [4].

Following is an outline of the paper. In Sec. II, we will
develop the equations of motion of a lattice of coupled
pendulums in terms of the evolution in time of their am-
plitudes and phase angles, under the assumption that the
temporal scale for this evolution is large compared to the
natural periods of the pendulums’ oscillations. The pen-
dulums are subject to damping forces and are driven
parametrically. The ultimate result of this section is a set
of equations for their steady-state amplitudes. These
equations are discrete analogs of the equations that gave
rise to the amplitudes of the nonpropagating hydro-
dynamic soliton. In particular, they constitute the
discrete version of the nonlinear Schrodinger equation.
Section III contains a description of the domain walls of
interest. The first and simplest type separates two re-
gions in which the “upper cutoff”” mode oscillates stably.
It can be described in terms of a phase slip. Viewed this
way, the domain wall, previously modeled with the use of
a nonlinear Schrodinger equation [7], is now described by
a solution of the sine-Gordon equation. In Sec. IV an al-
ternative approach to the study of the phase-slip domain
wall is developed. This approach involves a reduction of
the equations governing the amplitudes of oscillator am-
plitudes so that it applies to every other oscillator. We
find that the solution for the domain wall can depart
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significantly from the sine-Gordon, or nonlinear
Schrédinger equation, kink.

Section V extends the method described in Sec. IV so
that it applies to the domain wall separating modes hav-
ing different wavelengths. In particular, we consider the
case of an “upper cutof®’ mode, having a wavelength
equal to twice the distance between oscillators and a
“midband” mode, the wavelength of which is four times
the interoscillator distance. When the equations describe
the steady-state motion of every fourth oscillator a ver-
sion of the slowly-varying-envelope approximation ap-
plies. In Sec. VI numerical results for the shape of the
domain wall, obtained by integrating the equation
developed in Sec. V, are compared with the results of a
simulation of the motion of the one-dimensional oscilla-
tor array. Agreement is generally satisfactory. Section
VII contains some concluding comments, including a dis-
cussion of the genesis of the global condition of Denardo,
et al. [7]. It is hoped that the method described in Secs.
V and VI of this paper can be applied to phenomena oth-
er than the domain walls discussed here.

II. EQUATIONS OF MOTION

The pendulum lattice consists of a set of coupled non-
linear oscillators. The nonlinearity is due to the depen-
dence on displacement from the vertical of the torque ex-
erted by the gravitational field. If the displacement of the
ith pendulum in the lattice is denoted by x;(¢), then the
equation of motion of that pendulum has the form
dx; dx;

7 +‘}/’d—t- +kx; +k,(2x; —xi—l_xi+1)_axi3

=Fx;cos(Qt) . (2.1)
The nonlinear term ax} represents the softening of the
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We then express the variables x;(¢) and y;(t) in terms of
the amplitudes and phases with the use of Egs. (2.2) and
(2.3) and average the resulting equations over a cycle of
the drive, assuming that 4;(¢) and ¢;(¢) remain constant.
The terms on the right-hand side of Eq. (2.6) that survive
the averaging process yield the following equation for the
time development of the amplitude 4;:

dA?
L—=_lA2+£

2.
> dr S Aty Afsin(2¢;(2)) .

o 2.7)

[—ypi—kixpi—kopi(2x; —x; 1 —x; _ )+ ax}y; + Fx;y;cos(Qt)] .
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gravitational restoring force as the pendulum departs
from the vertical.

As a first step in the development of the approxima-
tions that constitute the foundation of our analysis we ex-
press the variable x; as in terms of an amplitude and a
phase angle, as follows:

x,(1)= 4,(t)sin %t+¢,»(t)] : (2.2)
then

=D (cos | Lot 23

n=—r=s i(t)cos | ==t (1) | . (2.3)

The approximate equality above is based on the assump-
tion that the time derivative of the phase factor ¢;(z) is
small compared to the frequency, (2, of the parametric
modulation.

With the use of the definition in Eq. (2.3) we reduce the
equation of motion (2.1) to the two following first-order
differential equations

i _ @.4)
dt Vi :
and
dy;
a =¥~k x; —ky(2x;—x; =%y
+ax?+Fx;cos(Qt) . (2.5)

Equations for the time evolution of the amplitudes and
phases are obtained as follows: Multiplying Eq. (2.4) by
x;(¢) and Eq. (2.5) by (2/Q)%,(¢) and adding

(2.6)

The equation governing the time development of the
phase angle ¢,(¢) is obtained by making use of the rela-
tionship

Q
x| =5,
2

¢; =arctan
! Vi

(2.8)
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2 dx; dy;
a, 9| Fa|
dt = x2+ 2 2y2 _7 . (2.9)
1 Q 1

Replacing x;(¢) and y;(¢) by the right-hand sides of Egs.
(2.2) and (2.3), and time averaging as above, we obtain the
equation of motion

4 _2 Ao kA
Tt Q2 |2 2
k, \
+7[2Ai_Aifl_Ai+l]_aAi
A;
+ 2 leos26)—L 4, @10

4 Q 2

Equations (2.7) and (2.10) are the basis of all the analysis
that follows.

III. STEADY-STATE SOLUTIONS:
NONPROPAGATING SOLITON
AND SIMPLE DOMAIN WALL

If the lattice has settled into a steady state, all pendu-
lums oscillating with half the frequency of the parametric
drive, the amplitudes, 4,(z), and the phase angles, ¢,(¢),
are constant in time. Then, from Eq. (2.7),

F 2 . _Y

2 Qs1n(2¢15,-) 7 (3.1)
Notice that the existence of a solution to the above equa-
tion implies the inequality F >y Q. As in all other cases,
parametric excitation of the pendulum lattice is a thresh-
old phenomenon. The equations that follow from Eqgs.
(2.10) when the lattice has achieved a dynamically steady
state are

A; ki A;
Ozl ! _Q +___l !
Q|2 |2 2
k
+_2[2Ai_Ai—l—Ai+l]~aAi3 _QA.'
2 2
Fo 2 , 1172
N 3.2
+ A; 10 4 (3.2)

In the above equation we have utilized Eq. (3.1) to ex-
press cos(2¢;) in terms of other parameters.

To simplify the notation we note that Eq. (3.2) can be
written as follows:

ad;—b(A, .+ A,_)—cA}=0, 3.3
where
2 172
Q ki 2k F 2 r:
=——t—F—= —= | = 3.4
=G aTa 4Q 4 » 34

b=—, (3.5)

= 2a
Q

While the coefficient a has a sign that depends on adjust-
able parameters, the signs of coefficients b and c are fixed
and positive.

Equation (3.3) is a discrete version of the nonlinear
Schrodinger equation. If we set the nominal spacing be-
tween the pendulums equal to one, and assume that the
amplitudes vary slowly as the lattice index is changed,
then Eq. (3.3) can be approximated as follows:

2
(@ —20)A(2)—bEAE) _ gzp=0, (3.7)
dz?
where the discrete index i has been replaced by the con-
tinuous variable z. This equation supports the following
localized solution

(3.6

1/2
ech

1/2
2(a —2b)

c

A(Z): (Z "‘Zo)

)

a—2b

(3.8)

which is the nonpropagating soliton, first seen in a trough
of water [1], and subsequently observed in a pendulum
lattice [2].

The discrete equation also supports extended solutions.
If we neglect the nonlinear term and a —2b <0, then
solutions of the form A, <sin(ki) follow, where
k?=(2b —a)/b. If the nonlinear coefficient ¢ is small,
the actual solutions are, in general, close to the sinusoidal
solution. A detailed analysis of the stability of the ex-
tended solutions requires application of the types of tech-
niques that have been used to study systems exhibiting
Kolmogorov-Arnold-Moser —type behavior [8].

In fact, Eq. (3.3) represents an example of the kind or
area-preserving map to which a good deal of attention is
still being paid. If we define A;= A4, — A4;,_,, then the
equation can be replaced by the following set of recursion
relations

A=A, +A, ., (3.9)

a—2b c
A ——=
b b

This map gives rise to periodic and fixed-point behavior,
and to “Hamiltonian chaos.” There is the intriguing pos-
sibility that the pendulum lattice provides a spatial arena
for the observation of the kind of temporal behavior that
continues to excite the interest of scientists and
mathematicians.

In addition, the recursion relations above have
relevance to the mean-field theory of charge-density
waves [9]. This relationship, which deserves further
study, will not be pursued here.

The crux of the investigation reported here is a domain
wall separating two particular periodic solutions to the
discrete steady-state equations. These two solutions are,
first the “‘upper cutoff” mode in which amplitudes alter-
nate as follow: Ak=(—1)kA0, and, second, the ‘“mid-
band” mode in which the amplitude repeats itself every
four sites. The explicit structure of this mode is

A=A+ I (3.10)
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A, =(—1)%4,, Ay +,=0. In both cases the nonzero
amplitudes are found —with no great difficulty —by sub-
stituting the solutions into Eq. (3.3). One finds

Ay=Va+2b/c , 3.11)
and
A,=Va/c . (3.12)

It is immediately clear that certain requirements must be
met in order for the modes in question to exist. In partic-
ular, the pendulum lattice supports the upper cutoff
mode only if a +2b >0, while dynamical stability of the
midband mode requires a > 0.

Assuming that the first inequality is satisfied and, fur-
thermore, that the system is just past the threshold of
dynamical stability of the upper cutoff mode (a +2b is
positive and small), we can construct a continuous ap-
proximation to the equations governing the domain wall
separating two regions in which this mode is supported.
The domain wall defines a region in which there is a lo-
calized phase slip. We will cast the description of the
domain wall in a form that clearly exhibits this
phenomenon. We do this by writing

A= Aycos(km+8;) . (3.13)
Equation (3.3) becomes
Agla cosd; +b(cosdy | +cosdy ;)]
—cA}(cosd, *=0. (3.14)

If we assume that the phase angle 6 suffers only slow vari-
ations, then the following approximate inequality holds

cosd; ;+cosb;, _;=~2cosd;

—Sin(Sk )(8k+l+8k—l_28k) .

(3.15)

Inserting this result into Eq. (3.14), and making use of
Eq. (3.11) we have

b Sin(ak )(8k+1+5k—1_26k)

— A3(cos’8, —cosd,)=0. (3.16)

After replacing the finite differences in Eq. (3.16) with the
appropriate derivative, and utilizing some simple tri-
gonometric identities we are left with the following non-
linear differential equation:

d% _ c4;

dk? 2
This equation supports a “sine-Gordon kink,” in which
the phase shift § changes continuously from 0 to #. The
characteristic distance, £, over which the phase shift
suffers a substantial change—measured in units of the
spacing between the pendulums—is given by

E=V'2b/cA} <(a+2b)"1/%.

sin(26)=0 . (3.17)

(3.18)

The assumption that the upper cutoff mode is just beyond
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the threshold of dynamical stability is consistent with a
slow variation in the spatial phase shift.

IV. ANOTHER APPROACH: THE KINK

There is a way to introduce the approximation of a
slowly varying envelope that allows one to extend the
domain-wall configuration beyond the sine-Gordon kink.
We begin by deriving a generalized equation for steady-
state configurations in which amplitudes alternate be-
tween two sets of values as the site index changes from
even to odd. Recalling our fundamental equation for am-
plitudes.

ad;—b(A; .+ 4;_)—cA}=0, 3.3)

we note that we can solve it for the amplitude of the cen-
tral oscillator in terms of its two neighbors:

A, =f(A4, +A4,_) . @.1)

An explicit form for the function f can be calculated ex-
plicitly, as Eq. (3.3) is a cubic equation. Using Eq. (4.1) to
express A; . in terms of A4, ., and 4;, and similarly for
A; _,, we obtain the following equation coupling the am-
plitudes of oscillators on neighboring even- or odd-
numbered sites

ad;—b[f(A; 4o+ A))+f(A4; ,+ 4;)]—cA}=0.
4.2)

Now we imagine that 4;,, is close in value to A4; for
every site index j. This allows us to perform a Taylor
series expansion in Eq. (4.2). Replacing the discrete in-
dexed variable A; by x (/), where [ varies continuously,
and assuming that x (I +2)=x(l), Eq. (4.2) is replaced by

dx , . d*x
ax()—b | f |2x(1)+2 4l +2 i +
_pdx o dx e
+f12x(1) 2dI +2 D + ] ex(1)’=0.
(4.3)

Expanding in the derivatives, and keeping second- and
lower-order derivatives of x (I), we are left with

, d’x
ax(1)—2bf(2x(1))—4bf (2.7:(1))52~

2

—4bf"(2x(1)) —c[x(D]P=0. (4.4)

dx
dl

To further reduce the equation we choose f(2x) as the
variable whose /-dependence is to be sought. Given Eq.
(4.1), we can obtain x (/) in terms of f as follows

x(f =L D=/

2b 4.5)
Then, using
3
af__|df | ]
x> |dx | df?’ 46
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and
2 2
g.i: _d_/: dx df , @.7)
dr? dl an2 df di?
we arrive at the following equation
ax(f(1)=2bf(D—c[x(f(]
dx | d [dx df ’
x x _
df df df =0. (4.8

Equation (4.8) can be solved by quadratures. Its first in-
tegral is immediate:

b___

= [ {ax(f)~2bf"

—e[x (P} Edp+C 4.9)

ar’
Because x is a cubic in f, the integration is over a polyno-
mial and can be carried out explicitly. The constant of
integration on the right-hand side above guarantees that
boundary conditions are met. In this case, the constant
ensures that the function f (/) approaches the appropri-
ate asymptotic limit as / — .

One further integration yields f (/) as a function of /.
Unfortunately, it is not possible to express the result of
the final integration in terms of tabulated functions, as
the integrand contains the square root of a ninth-order
polynomial. However, it can be verified that when a +2b
is positive and small the solution is close to the sine-
Gordon kink derived above. This is because, according
to Eq. (4.5), x(f)= —f. Substitution into Eq. (4.9) leads
to the solution for f (1) as the ¢* kink, which has an am-
plitude variation equivalent to the sine-Gordon kink.

As the quantity a+2b increases so that the upper
cutoff mode is well beyond threshold, the shape of the
domain wall departs further and further from that of the
simple kink. In fact, when the parameter a becomes posi-
tive, the assumption of a slowly varying envelope ceases
to be valid. This is because the derivative df/dx
diverges in the region containing the kink. The expres-
sion for f (/) obtained by integrating Eq. (4.9) becomes
singular when this occurs, in that the derivative df /dl is

infinite. It is then necessary to abandon the slowly-
x(f)
£
a<0 a>0
a=0
FIG. 1. Plot of the function x(f) in the parameter ranges

a <0, a=0, a>0. Note that when @ >0, x is a nonmonotonic
function of f.
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x(f)

FIG. 2. Indicating how one bypasses the nonmonotonic re-
gion in the phase-shift kink when the parameter a is greater
than zero.

varying-envelope approximation and utilize a method
that recognizes the fact that the amplitudes of the pendu-
lums’ swings are discrete quantities as a function of loca-
tion along the lattice. The replacement of a continuous
by a discrete description will take place at some point in
the vicinity of the region of most rapid variation of the
amplitudes. There is no prescription that sets the exact
location at which one matches the continuous with the
discrete method, but a bit of inspection provides a likely
point, at which one can verify that the domain wall is
reproduced to a reasonable accuracy, at least in some pa-
rameter regimes. The rationale for the choice of a
matching point follows from the structure of the curve
giving the quantity x as a function of f. This curve is
displayed in Fig. 1.

Note that the function x(f) is nonmonotonic when
a >0, which means that f as a function of x is not single
valued in this regime. The condition a =0 corresponds to
the threshold of stability for the parametrically excited
midband mode. This mode can also be characterized in
terms of its periodicity on the lattice as a “A=4" mode,
where A is the mode’s wavelength in units of the lattice
spacing. When a <0 the mode is not dynamically stable,
and when a >0 it is.

On way to obtain a shape for the interface when a >0
is to apply the slowly-varying-envelope approximation in
the range V/(a +2b)/c >|f|>Va/c. This range en-
compasses the limit /=, which corresponds to
f=V(a+2b)/c, and extends to the point at which
x (f)=0. One then extrapolates through a central point,
which we identify with an x(/=0)=0, to the curve that
is the inverted mirror image of slowly-varying-envelope
approximation result on the other side of / =0.

Note that this method is equivalent to bypassing the
nonmonotonic portion of the curve in Fig. 1 as illustrated
in Fig. 2 (with the proviso that there is an isolated point
in the center of the transition region). This is reminiscent
of the Maxwell construction in the van der Waals theory
of the gas-liquid system. In this light, it is not inap-
propriate to think of the domain wall as being the locus
of an abrupt, or “first-order” shift in the lattice’s
configuration.

V. THE A=2-A=4 INTERFACE

Now to the interesting case. Experiments have estab-
lished that modes with two different fundamental periodi-
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cities can coexist in the pendulum lattice [3]. The local
stability of this coexistence seems to be a consequence of
the discrete spatial structure of the system. While there
is no firm theoretical foundation for this conjecture its
plausibility will be established in Sec. VII. We will now
devise a method that allows for the application of the
slowly-varying-envelope approximation to the case of the
region separating an upper cutoff and a midband mode.
The key to this approach is the observation that in both
the A=2 and the A=4 modes the amplitude repeated
every four lattice sites. In other words, four is the least
common multiple of the spatial periodicities of the two
coexisting modes. We will use this fact to extend the ap-
proach of the above section to the case at hand. In prin-
ciple, the method utilized ought to be applicable to cases
in which modes of arbitrary periodicities coexist.

In the remainder of this section, we will develop the
slowly-varying-envelope approximation, explore the lim-
its of its applicability, and briefly describe the numerical
determination of the amplitudes in the core of the region
in which the transition between the A=2 and A =4 modes
takes place.

We start by noting that one can utilize Eq. (4.2) to con-
struct an equation in which the amplitude at every fourth
site enters. One accomplishes this by taking advantage of
the fact that Eq. (4.2),

ad;—b[f(A; ., +A)+f(A;_,+A4;,)]—cA}=0, “42)

allows one, in principle, to solve for A4; in terms of 4, ,
and 4;_,:

A;=8(A; 15 4;-5) .
Substituting this into Eq. (4.2) one obtains the equation
ad;—b[f(g(A; 44 A)+ A;)

+f(g(A;_y, A;))+ A;))]—cA}=0, (52)

where we have used the fact that the function g is sym-
metric in its two arguments. Now, we assume that
Aj 4= A;, and perform a gradient expansion in Eq. (5.2).
If we replace A; by x (1), where, as in Sec. IV, / is a con-
tinuous variable, then

(5.1

dx 1 de
4l +3(4) d12

and if we retain all terms of up to second order in the dis-
placement 8 =4, Eq. (5.2) becomes

2bf[g(x(l),x(l))+x(1)]—-c[x(1)]2
2

+fn

Ajrg=x(U+8)=x(D+4=-

ax(l)—

2

— &2 ' ax | (_
bd f81 d12 +f'8, 4l 0.

(5.3)
In the above equation we have introduced the following
definitions:

d 2
fl_ f(x)’ fn f(x)
(5.4)
_ 9g(x,y) _ aZg(x,y)
! ax  °? ax?
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We now choose the function g(x,x) as the independent
variable. The argument of f’ is the same as the argument
of the function f as it first appears in Eq. (5.3), while g,
and g, have both arguments equal to x(/). the reduction
of Eq. (5.3) to a form that parallels Eq. (4.8) necessitates a
few steps, which are relegated to the Appendix. The end
result is the equation

2
_ B _Bf' d |dx |dg | |_
ax(g)—2bf (g)—c[x(g)]’ 4 dx dg | dg | dl 0
dg
(5.5)

In Eq. (5.5), the quantity B is equal to 582 and the func-
tions x(g) and f(g) are defined in the Appendix. The
quantity f' is as defined in (5.4), expressed as a function
of g.

The steps leading to the solution of Eq. (5.5) are
straightforward. Multiplying by the factor (4dx /dg)/
Bf') and integrating with respect to g:

fg ax(g’')—2bf(g" ) —c[x(g")]? 8x
Bf'(g) dg' &

(5.6)

One further integration yields g as a function of /. A
complicating feature of the solution obtained in this way
arises from the fact that the derivative dx/dg passes
through zero in the region of the domain wall. This
means that there is no entirely smooth interpolation be-
tween the two regimes. However, it is possible to join
two solutions of the form embodied in Eq. (5.6), one in
the wavelength-two regime and the other in the
wavelength-four regime. The resulting domain wall is
continuous, but has a singularity in the form of an infinite
first derivative. Nevertheless, as we will see, this continu-
ous domain wall reproduces the structure of the transi-
tion region observed in the actual pendulum lattice, and
in simulations of such a lattice. The singularity of the
slowly-varying-envelope approximation does not seem to
signal a fatal pathology in the method as applied to this
problem.

VI. NUMERICAL CALCULATIONS
AND COMPARISON WITH DATA

In order to assess the quantitative reliability of the
solutions obtained via the method described in the previ-
ous section, we compare the interface profile as calculat-
ed with the use of the slowly-varying-envelope approxi-
mation with data generated by numerical integration of
Eq. (2.1). Table I contains values for the displacements
from equilibrium of the oscillators in a 50-component lat-
tice containing a A=2-A=4 interface [10]. The values
listed represent a ‘““‘snapshot” of the lattice, the snapshot
having been taken when the displacements were at their
greatest values. The accuracy of these values are limited
because of two features of the method by which they
were obtained. First, the point in time at which the oscil-
lator displacements are largest was determined by obser-
vation of an animated display, rather than by a more pre-
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TABLE 1. The displacements of the oscillators in a 50-oscillator array at the instant at which those
displacements are maximum. See the comments in the first paragraph of Sec. VI for a discussion of the
reliability of the data. This data is the result of a numerical integration of the equation of motion Eq.

(2.1).

Oscillator index Amplitude Oscillator index Amplitude
0 —0.622787 21 0.035 303

1 0.622 787 22 —0.365 355
2 —0.622 787 23 —0.010449
3 0.622 787 24 0.356 555
4 —0.622787 25 0.003 439
5 0.622 787 26 —0.354037
6 —0.622 787 27 —0.001 353
7 0.622 787 28 0.353315
8 —0.622 787 29 0.000 675
9 0.611 788 30 —0.353 109
10 —0.622 788 31 —0.000 404
11 0.622 788 32 0.353052
12 —0.622 789 33 0.000265
13 0.622 788 34 —0.353037
14 —0.622 764 35 —0.00018
15 0.622 538 36 0.353033
16 —0.620714 37 0.000 123
17 0.606 546 38 —0.353033
18 —0.500338 39 0.000 084
19 —0.133588 40 0.353034
20 0.396 509 41 0.000056
42 —0.035 3034 46 —0.353035
43 —0.000036 47 —0.000 006
44 0.353034 48 0.353035
45 0.000 020 49 —0.000 006

cise numerical analysis of the data. Second, the oscilla-
tors do not achieve maximum excursions from equilibri-
um simultaneously. There are small, but nonnegligible
differences in the phases of the oscillators so a snapshot
cannot yield values for the amplitudes of all oscillators.
This has been noted experimentally [11], and it can be un-
derstood analytically [12]. Fortunately, for the config-
urations most directly relevant to the case at hand the
differences between the phases do not exceed about 5°.

Figure 3 displays the displacements numerically. Os-
cillators farther out on either side propagate the patterns
set by the closer-in oscillators. In other words, the A=2
and 4 modes are well established in the regime displayed
in Fig. 3.

The validity of the time-averaged equations underlying
the slowly-varying-envelope approximation is tested by
evaluating the left-hand side of Eq. (3.3), with coefficients
adjusted as follows: a=0.947, b=1, ¢=7.598. The
homogeneity of Eq. (3.3) allows us to set one of the above
coefficients equal to 1, and that has been done. The
coefficients a and ¢ were then determined by fitting to the
amplitudes of the A=2 and 4 modes bracketing the
domain wall. The results of this test are also displayed in
Fig. 3. Deviations from zero are largest in the immediate
vicinity of the domain wall, but, at their greatest, they do
not exceed about 1%. This conforms with the limitations
suggested by the phase differences and presents us with a
bound on both the reliability of the data and the quality
of the time-averaged equations.

Figure 4 contains a comparison of the data with the
quantities f (1), g (1), and x () as obtained from Egs. (5.5),
(5.6), (A1), and (A2). The fit to the data was accom-
plished by adjusting the horizontal scale and shifting the
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FIG. 3. The displacements of the oscillators in the 50-
oscillator array at the instant at which those displacements are
maximum. See the comments in the first paragraph of Sec. VI
for a discussion of the reliability of the data. Also displayed are
the numerical values of the right-hand side of Eq. (3.3), when
the data for the displacements are utilized. The right-hand or-
dinate establishes the scale for the displacements, which appear
as filled rectangles and the left-hand ordinate refers to the re-
sults for the left-hand side of Eq. (3.3), the values of which are
displayed as open circles.
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FIG. 4. Comparison of the displacements of the 17 oscilla-
tors closest to the A=2-4 domain wall with the results for g (/),
x (1), and f (/) obtained from Egs. (5.5), (5.6), (A1), and A2).

horizontal axis. Note that the comparison is restricted to
the 17 oscillators in the immediate vicinity of the domain
wall. The function g (/) as depicted on the plot interpo-
lates smoothly between two negative values, while the
function x (/) rapidly varies from a positive value on one
side of the domain wall to a negative value on the other
side. The functions g (/) and x(I) approach the same
asymptote in the region of the A=2 mode and have equal
and opposite values in the A=4 mode. The function f(I)
interpolates between and asymptotic value of zero in the
A=4 regime and a value equal and opposite to g (/) and
x (1) in the A=2 regime. As the figure clearly indicates,
the slowly-varying-envelope approximation replicates the
amplitudes on the two sublattices labeled x (/) and g (1),
but it is not satisfactory for the two sublattices corre-
sponding to the function f (/). This probably arises from
the attempt to encompass the amplitudes on two separat-
ed sublattices by a single, continuous, function.

We may attempt to take into account the difference be-
tween the “f sublattices” by noting that one of them con-
sists of oscillators flanked on the left by a “g-sublattice”
oscillator and on the right by an “x-sublattice” oscillator,
while on the other f sublattice the locations of the two
neighboring oscillators are reversed. We can take this
into account by rewriting Eq. (A2) as two equations, each
appropriate to one of the two f sublattices, i.e.,

af (D—c[fi(DP=x(1+8)+g(I—8) (6.1)

and

af,(D—c[fo(DP=x(1—8)+g(I+3) . (6.2)

If the derivations from f (/) induced by the difference be-
tween the right-hand sides of Egs. (6.1) and (6.2) and the
right-hand side of Eq. (A2) are small, then a low-order
Taylor expansion suffices to calculate those differences.
Writing f(1)=f )+ A(D), f,(1)=f(1)—A(]), we have

dx _dg
dl  dl
af (D)=3c[f(DP

Figure 5 displays a comparison between the data and the

A= (6.3)
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FIG. 5. Comparison of the displacements of the 17 oscilla-
tors closest to the A=2-4 domain wall with the use of Egs.
(5.5), (5.6), (A1), and (A2), and also Eq. (6.3), which approxi-
mates the differences between the behavior of the two sublat-
tices f1(1) and f,(I).

corrected slowly-varying-envelope approximation. The
improved envelope functions, (/) and f,(l), for the two
sublattices are displayed as broken curves. The agree-
ment with data is, obviously, greatly improved. This
comparison is not entirely honest, however, in that the
quantity 6 has been adjusted to yield a best fit, rather
than to achieve consistency with the horizontal scale.
Nevertheless, the trends are clearly in the right direction.

VII. CONCLUSION

While the interface between A=2 and a A=4 mode
differs from the localized structures previously observed
in the linear array of oscillators, we have seen that the
approximation of a slowly varying envelope, suitably
modified, provides the basis for an acceptable quantita-
tive model of its structure. In light of this, a similarly
constructed model ought to describe the transition region
between coexisting modes with less compatible periods.
Such coexistence has been observed in simulations of the
oscillator array [13]. The derivation of the more general
model will likely prove more difficult, and the equations
corresponding to Eq. (5.5) more cumbersome, but the
form of the equation will probably allow for the kind of
numerical integration that was utilized to obtain solu-
tions in the case at hand.

We now return, briefly, to two issues raised in the body
of this paper. The first has to do with the dynamical sta-
bility of a state comprised of two coexisting modes. It is
reasonable to assume that there is, in general, a dynami-
cal “preference” for one of the modes, and—if it were
possible—that the favored mode would invade the region
occupied by the less-favored mode. Ultimately, this pro-
cess leads to the elimination of less-favored mode. How-
ever, the most natural way for one mode to displace
another is for the entire configuration to translate along
the array. The modes as depicted in Figs. 3-5 are clearly
in registry with the lattice, and such a translation would
entail a disruption of this registry. Thus, spatial phase
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locking most likely pins the interface and, as a result,
guarantees its local stability. Of course, if the array were
subject to stochastic perturbations the stability of the in-
terface could not be taken for granted. Thus, it is not
clear whether the kind of coexistence we have been dis-
cussing here will occur in charge-density-wave systems.
This issue deserves further study.

The second point has to do with the fact that the en-
velope has an infinite first derivative in the transition re-
gion, as noted in Sec. V. This singularity clearly violates
the rationale for the gradient expansion leading to Eq.
(5.3). However, it also widens the range of applicability
of the slowly-varying-envelope approximation. Because
of this singularity, the slowly-varying-envelope approxi-
mation predicts a transition region between two coexist-
ing modes without requiring any degeneracy between the
modes. To see that this is true, and in what way, imagine
the situation as it would exist if the derivative dx /dg
were everywhere finite and never changed sign. Then Eq.
(5.5) could be analyzed in terms of the standard dynami-
cal analogy applied to, for instance, the equation obeyed
by the standard, hyperbolic tangent, kink. This interface
is governed by the same equation as controls the motion
of a ball balanced almost at equilibrium on top of one of
two peaks, which rolls over to the second peak, ap-
proaching the top where it is again almost at equilibrium.
Clearly, the two peaks must have the same elevation.
The case at hand has similar dynamical analogy. The ex-
istence of a solution corresponding to a transition region
between two modes that extend arbitrarily far out from
the interfacial region thus entails a degeneracy condition.
This is the global condition derived by Denardo, et al [7].
On the other hand, the singularity provides a point at
which two nominally incompatible solutions can be
“stitched” together.
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APPENDIX

To reduce Eq. (5.3) to the compact form of Eq. (5.5),
we need to make use of a number of relations, easily
derivable from the definitions of the functions f and g.
First,

—pd
ag <% =f(x+g)

b (A1)

and

af (x +g)—c[f(x +g)]* _
b

x+g. (A2)

These two relations enable us to express both x(g) and
f(g +x) as a function of g. Note that the dependent
variable x will be a ninth-order polynomial in g. Now,
because the function g (x,x) is symmetric in its two argu-
ments, the partial derivative g,(x,x) is equal to half the
total derivative dg(x,x)/dx. To obtain a result for
g,(x,x), we note that the following equation defines the
function g (x,y)

_ 3
98 = g(e)=flg+x)+flg+y) .

b (A3)
Then,
g, A'(g)=f'(g+x)1+g)+f'(g+y)g,, (A4)
s0,
_ f'(g+x)
+p)= . AS)
& ) e = g tx)—f (g +9) (
Setting x =,
—_ fg¥x) _ldg
& X = 2 gt x) 2 dx (A6)

Taking an additional derivative of Eq. (A5) with respect
to x, and then setting x =y we obtain

(x,%) (A7)
82 [A'(g)—2f"(g+x)]? [A'(g)—2f"(g +x)]?
If we now take a derivative of dg /dx and make use the right-hand side of Eq. (A6) we obtain
”n dg ’ ” ”n dg ”n
p 2f"(g+x) |1+~ 2f'(g +x) |[[A"(g)—2f (g+x)];—2f (g +x)
g
= (A8)
dx?  A'(g)—2f'(g+x) [4'(g)—2f"(g+x)]
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Combining Egs. (A6), (A7), and (A8), we are left with the
following relationship between g,(x,x) and the first and
second derivatives of g(x,x)

ldzg_lf”(g _+_x)
4 dx?2 4 f'(g+x)

dag
dx

g,(x,x)= (A9)

The terms in Eq. (5.3) containing the partial derivatives
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g,(x,x) and g,(x,x) then reduce as follows:
f'(g+x )gZ(xsx )+f”(g +x )[gz(X,x )]2
’ 2
_flgtx) dg 40

4 dx?’
and Eq. (5.5) follows immediately.
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